

Reducing cognitive load with infographics, icons and signs

Matthew O'Brien

 mobrien@bbc.qld.edu.au

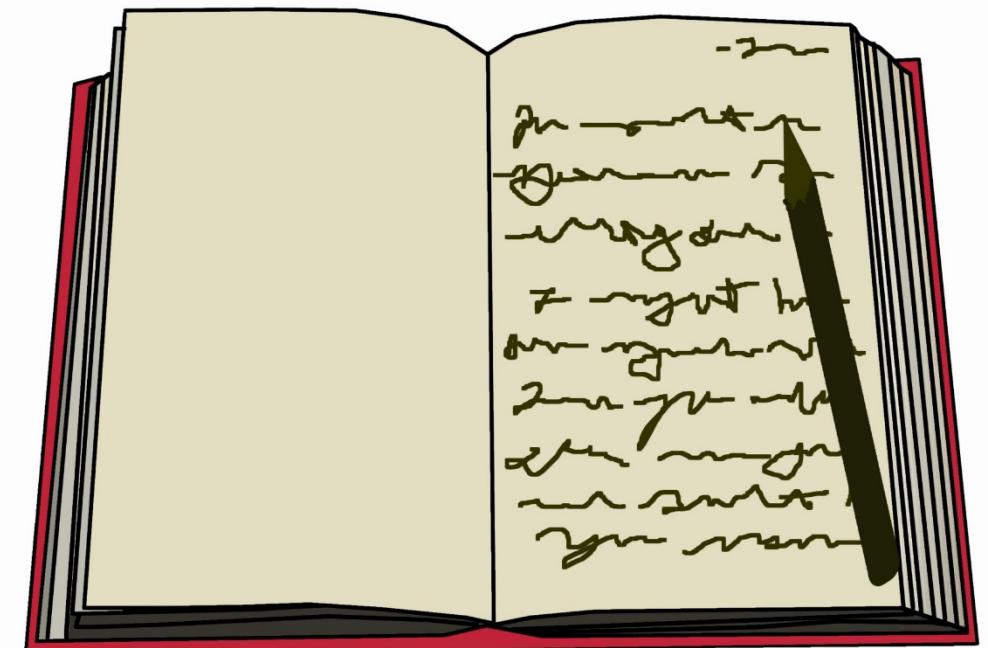
 matthewo_brien

 educationstylus.com

 bit.ly/YouTubeMOBrien

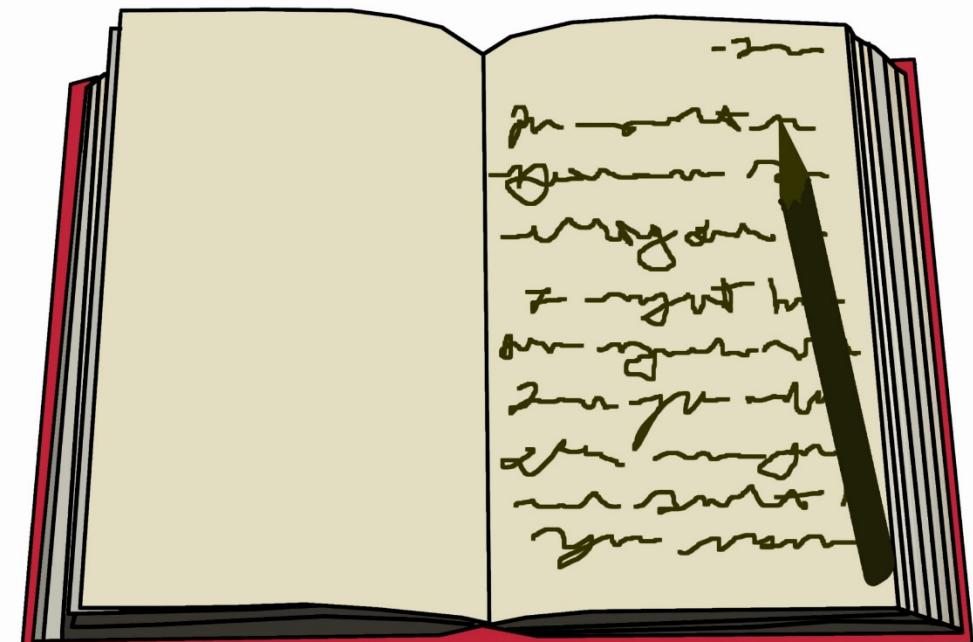
BRISBANE BOYS' COLLEGE

The Plan


1. Introduction to cognitive load
2. Example of cognitive load when driving
3. How driving signs reduce cognitive load
4. Examples of use of infographics, icons and signs
5. Designed infographics, icons and signs to reduce cognitive load (and where to download)
6. Quick demonstration (how to) of creating infographics, icons and signs using
 1. PowerPoint
 2. OneNote
7. Bus ways and bikeways – behaviour control
8. Using colour coding for collaborative work and behaviour control
9. Examples of student behaviour when colour coding is used

The Plan

1. Introduction to cognitive load
2. Example of cognitive load when driving
3. How driving signs reduce cognitive load
4. Examples of use of infographics, icons and signs
5. Designed infographics, icons and signs to reduce cognitive load
(and where to download)
6. Quick demonstration (how to) of creating infographics, icons and signs using
 1. PowerPoint
 2. OneNote
7. Bus ways and bikeways – behaviour control
8. Using colour coding for collaborative work and behaviour control
9. Examples of student behaviour when colour coding is used

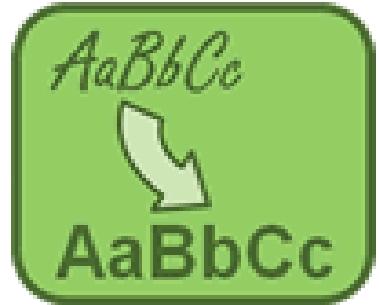

What is cognitive load

What is cognitive load

What is cognitive load

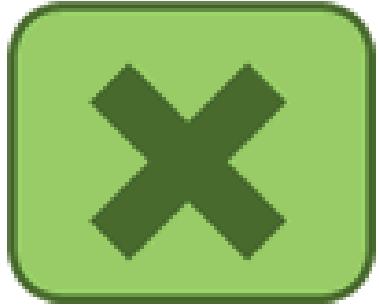
7 AM	
8 AM	Educational Data Analysis Trial Information Session and Data Symposium - Group 2 1-4pm ISQ Barry Dean Barry, Tom 8
9	Briefing Matthew O'Brien - 09Science0 R201 Matthew
10	BBC Executive Captains room Graeme
11	Edutech and edutech dinner
12 PM	FW: MSFT re EduTECH, Briefing
1	Matthew O'Brien re IT spa
2	10Science R201
3	Proposed date for Schoolbox demo Tom's Office
	MSFT round
	EduTECH, Briefing

What is cognitive load

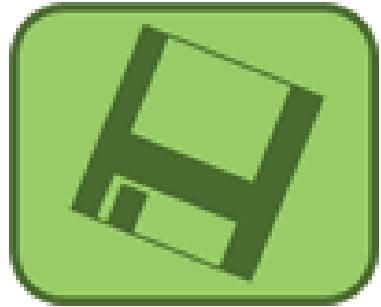


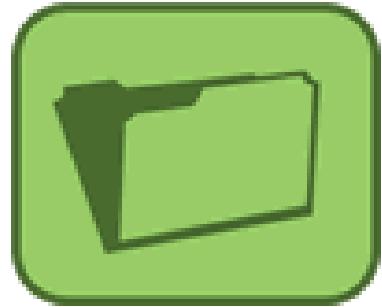
- Substitution
 - in which the technology is just used to do what has always been done
- Augmentation
 - where the technology adds something new to what has always been done
- Modification
 - where the technology changes what has always been done, adding new dimensions and taking away some redundancies
- Redefinition
 - in which the learning environment is defined in a new way that transforms the education space.

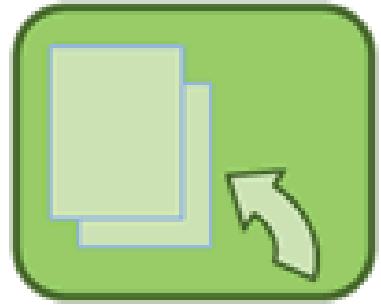
Use the Stylus

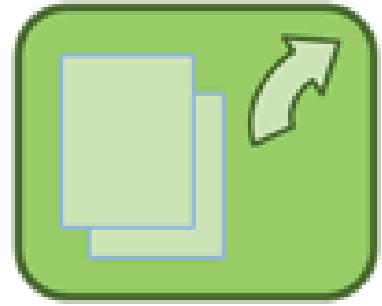

Type

Don't use web


Do use web


Right (Correct)

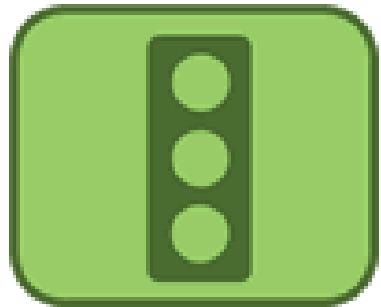

Wrong (Incorrect)

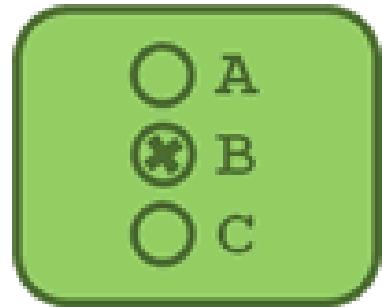

Save

New Folder

Document sent to
you

Send your document
to me


Email

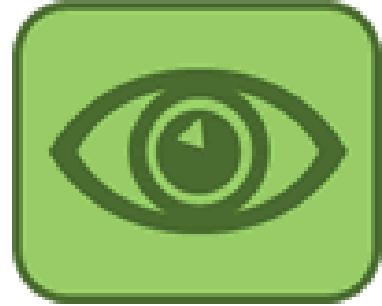

Time limit

You will be timed

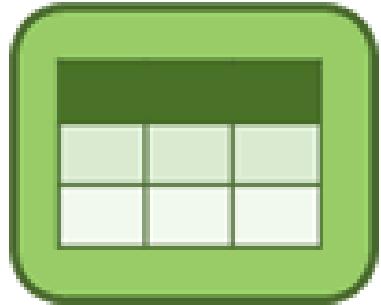
Status
(red, yellow, green)

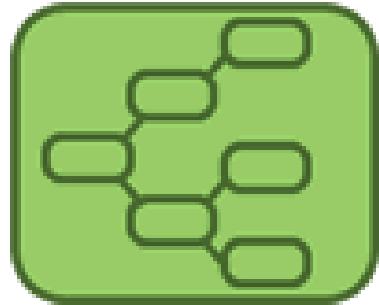
Multi-choice quiz

Question


Information

Important


Examine


Look

Idea

Tabulate
(draw table)

Flow chart
(Concept map)

Graph

Calculate

RESULTS

RESULTS

Free stuff (all these icons)!

www.educationstylus.com


arch “cognitive”

Exit presentation

- Show how to use PowerPoint for icons and infographics

Write

Go to OneNote

- Show how to use OneNote for images
- Show how to make templates
- Show how to make linked notes to calendar

- Substitution
 - in which the technology is just used to do what has always been done
- Augmentation
 - where the technology adds something new to what has always been done
- Modification
 - where the technology changes what has always been done, adding new dimensions and taking away some redundancies
- Redefinition
 - in which the learning environment is defined in a new way that transforms the education space.

INTERSTATE
UPGRADE
NEXT 8 KI

Use $\Delta H = mC\Delta T$ to determine the ΔH of a reaction with the following results:

- Initial mass of item burnt = 235.9g
- Final mass of item burnt = 1.7g
- Mass of water = 345.2g
- Initial water temp = 10.2 $^{\circ}\text{C}$
- final water temp = 65.2 $^{\circ}\text{C}$
- specific heat of water = 4.184 J/g $^{\circ}\text{C}$

Use $\Delta H = mC\Delta T$ to determine the ΔH of a reaction with the following results:

- Initial mass of item burnt = 235.9g
- Final mass of item burnt = 1.7g
- Mass of water = 345.2g
- Initial water temp = 10.2 $^{\circ}\text{C}$
- final water temp = 65.2 $^{\circ}\text{C}$
- specific heat of water = 4.184 J/g $^{\circ}\text{C}$

Teacher space
(I promise I WILL write here)

Student space
(I promise I WON'T write here)

Reflection space
(What do you need to do next time)
(What did you learn)

Use $\Delta H = mC\Delta T$ to determine the ΔH of a reaction with the following results:

- Initial mass of item burnt = 235.9g
- Final mass of item burnt = 1.7g
- Mass of water = 345.2g
- Initial water temp = 10.2 $^{\circ}\text{C}$
- Final water temp = 65.2 $^{\circ}\text{C}$
- specific heat of water = 4.184 J/g $^{\circ}\text{C}$

Use $\Delta H = mc\Delta T$ to determine the ΔH of a reaction with the following results:

- Initial mass of item burnt = 235.9g
- Final mass of item burnt = 1.7g
- Mass of water = 345.2g
- Initial water temp = 10.2 $^{\circ}\text{C}$
- Final water temp = 65.2 $^{\circ}\text{C}$
- specific heat of water = 4.184 J/g $^{\circ}\text{C}$

$$\Delta H = mc\Delta t$$

$$m = 345.2 + 1.7 + 235.9$$

$$= 582.8\text{g}$$

$$\Delta t = 65.2 - 10.2$$

$$= 55^{\circ}\text{C}$$

$$c = 4.184 \text{ J/g}^{\circ}\text{C}$$

$$\Delta H = 582.8\text{g} \times 4.184 \text{ J/g}^{\circ}\text{C} \times 55^{\circ}\text{C}$$

$$\Delta H = -134113.936\text{J}$$

= -134.114 KJ Exothermic

Use $\Delta H = mc\Delta T$ to determine the ΔH of a reaction with the following results:

- Initial mass of item burnt = 235.9g
- Final mass of item burnt = 1.7g
- Mass of water = 345.2g
- Initial water temp = 10.2 $^{\circ}\text{C}$
- Final water temp = 65.2 $^{\circ}\text{C}$
- specific heat of water = 4.184 J/g $^{\circ}\text{C}$

$$\Delta H = mc\Delta T$$

$$m(\text{H}_2\text{O}) = 345.2\text{g}$$

$$c = 4.184 \text{ J/g} \cdot ^{\circ}\text{C}$$

$$\Delta T = \text{initial} - \text{final}$$

$$= 10.2 \text{ } ^{\circ}\text{C} - 65.2 \text{ } ^{\circ}\text{C}$$

$$= -55 \text{ } ^{\circ}\text{C}$$

sub in values

$$\Delta H = 345.2\text{g} \times 4.184 \text{ J/g} \cdot ^{\circ}\text{C} \times -55 \text{ } ^{\circ}\text{C}$$

$$= -79437.5$$

$^{\circ}\text{R}$

$$\underline{-79.4 \text{ kJ}}$$

$$\Delta H = mc\Delta T$$

$$m = 345.2$$

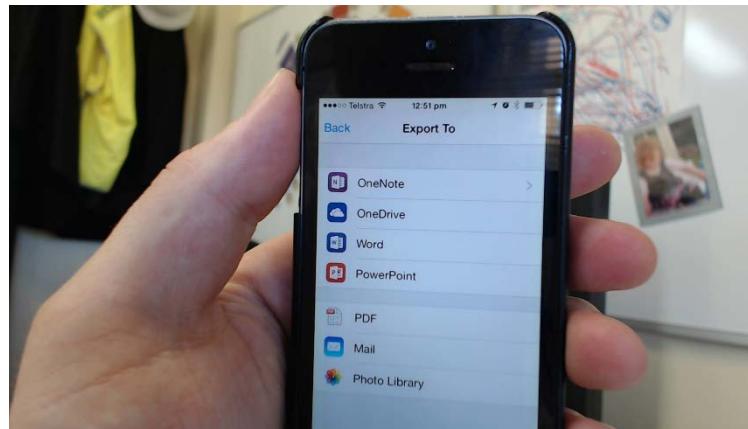
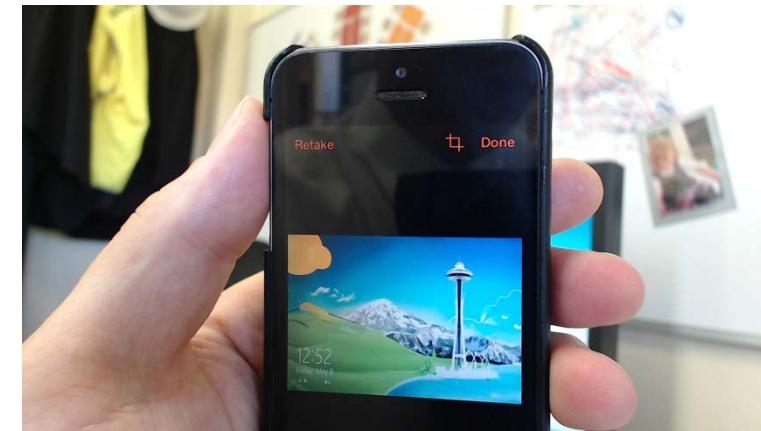
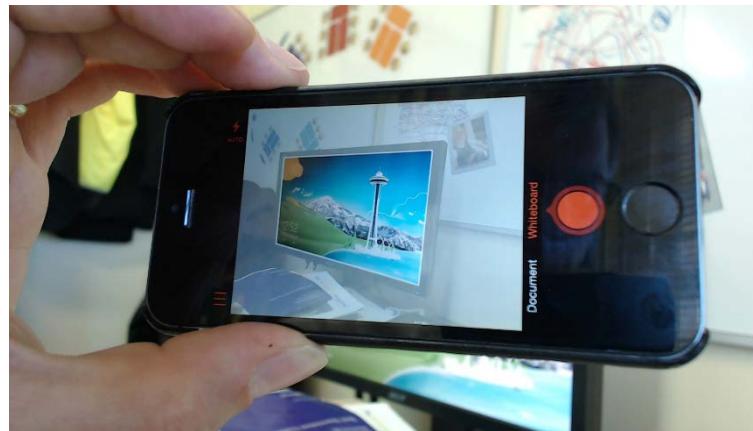
$$\Delta T = 10.2 - 65.2$$

$$= -55 \text{ } ^{\circ}\text{C}$$

$$c = 4.184 \text{ J/g} \cdot ^{\circ}\text{C}$$

$$\Delta H = 345.2\text{g} \times 4.184 \text{ J/g} \cdot ^{\circ}\text{C} \times -55 \text{ } ^{\circ}\text{C}$$

$$\Delta H = -79437.5$$




$$= -79.4 \text{ kJ}$$

Exothermic

BONUS!

- Windows phone – <http://www.windowsphone.com/en-au/store/app/office-lens/>
- iOS – <https://itunes.apple.com/app/office-lens/id975925059>
- Android – <http://aka.ms/officelensandroid>

The challenge

- What is one thing you are going to do as a result of this presentation?

Matthew O'Brien
Head of Strategic Planning
Brisbane Boys' College

mobrien@bbc.qld.edu.au

matthewo_brien

educationstylus.com

bit.ly/YouTubeMOBrien

BRISBANE BOYS' COLLEGE